rRNA operon copy number reflects ecological strategies of bacteria.

نویسندگان

  • J A Klappenbach
  • J M Dunbar
  • T M Schmidt
چکیده

Although natural selection appears to favor the elimination of gene redundancy in prokaryotes, multiple copies of each rRNA-encoding gene are common on bacterial chromosomes. Despite this conspicuous deviation from single-copy genes, no phenotype has been consistently associated with rRNA gene copy number. We found that the number of rRNA genes correlates with the rate at which phylogenetically diverse bacteria respond to resource availability. Soil bacteria that formed colonies rapidly upon exposure to a nutritionally complex medium contained an average of 5.5 copies of the small subunit rRNA gene, whereas bacteria that responded slowly contained an average of 1.4 copies. In soil microcosms pulsed with the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), indigenous populations of 2,4-D-degrading bacteria with multiple rRNA genes ( = 5.4) became dominant, whereas populations with fewer rRNA genes ( = 2.7) were favored in unamended controls. These findings demonstrate phenotypic effects associated with rRNA gene copy number that are indicative of ecological strategies influencing the structure of natural microbial communities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development

Microbiologists utilize ribosomal RNA genes as molecular markers of taxonomy in surveys of microbial communities. rRNA genes are often co-located as part of an rrn operon, and multiple copies of this operon are present in genomes across the microbial tree of life. rrn copy number variability provides valuable insight into microbial life history, but introduces systematic bias when measuring com...

متن کامل

Long-term forest soil warming alters microbial communities in temperate forest soils

Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial co...

متن کامل

Engineered ribosomal RNA operon copy-number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number

Ribosomal RNA (rrn) operons, characteristically present in several copies in bacterial genomes (7 in E. coli), play a central role in cellular physiology. We investigated the factors determining the optimal number of rrn operons in E. coli by constructing isogenic variants with 5-10 operons. We found that the total RNA and protein content, as well as the size of the cells reflected the number o...

متن کامل

rrndb: the Ribosomal RNA Operon Copy Number Database

The Ribosomal RNA Operon Copy Number Database (rrndb) is an Internet-accessible database containing annotated information on rRNA operon copy number among prokaryotes. Gene redundancy is uncommon in prokaryotic genomes, yet the rRNA genes can vary from one to as many as 15 copies. Despite the widespread use of 16S rRNA gene sequences for identification of prokaryotes, information on the number ...

متن کامل

A Coarse-Grained Biophysical Model of E. coli and Its Application to Perturbation of the rRNA Operon Copy Number

We propose a biophysical model of Escherichia coli that predicts growth rate and an effective cellular composition from an effective, coarse-grained representation of its genome. We assume that E. coli is in a state of balanced exponential steady-state growth, growing in a temporally and spatially constant environment, rich in resources. We apply this model to a series of past measurements, whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 66 4  شماره 

صفحات  -

تاریخ انتشار 2000